If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+1.4x+12=0
a = -4.9; b = 1.4; c = +12;
Δ = b2-4ac
Δ = 1.42-4·(-4.9)·12
Δ = 237.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.4)-\sqrt{237.16}}{2*-4.9}=\frac{-1.4-\sqrt{237.16}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.4)+\sqrt{237.16}}{2*-4.9}=\frac{-1.4+\sqrt{237.16}}{-9.8} $
| -13-9x=19 | | -4x-19+1+10x-1x=0 | | h+9=-6-2h | | 282+272=-157+15x | | (8x-16)=(6x+12) | | -4a+139=4a+123 | | 6=-2/9+v | | 12x+26=7x-14 | | r-r+r=7 | | 6–5=6–t | | 8c+3=6c+4 | | (-3f)+2+10=18 | | -5=7-4w= | | 2(3x=8)=70 | | -201+7x=456-2x | | -2(-8m-4)=-120 | | 5(1−4x)=2x−40 | | p+32=95 | | 3=6/s | | −1.2(3x−3)=4(3x+0.9) | | x48=68 | | 104x=13 | | 7x−12=37 | | -1x-4x+17-12-1x=0 | | -7x+35=-2(7x+7) | | m2=14| | | −15=6−3x | | 3(x+4)=3x+5+7 | | 7(n-3)=7 | | 4-3n=2n-4n | | 15u=11u-4=-16 | | 30+13x=15x-32 |